NEW ORLEANS—As technology continues to transform the oil and gas industry, work-class remotely operated vehicles (ROV) are taking up temporary residence on the subsea floor.

Powered by batteries, the ROVs are taking on tasks such as cleaning structures, inspecting equipment, carrying out surveys and supporting some drilling efforts—all while cutting costs and saving time for offshore operations. But the role of these tethered underwater vehicles is becoming more sophisticated as developers work to equip them with electric multi-function manipulators and other improved functions, enabling the devices to carry out more tasks.

“The end game is getting vehicles that can swim around subsea autonomously,” said Todd Newell, vice president of technology for Oceaneering International Inc., a Houston-based engineering and technology company behind the enabled-ROV (E-ROV). It also includes untethered operations and longer-range capabilities.

The industry isn’t quite there yet. But headway is being made.

Speaking during a session at the recent Underwater Intervention 2019 conference, Newell spoke about key steps in the evolution of Oceaneering’s E-ROV, the concept for which he said was created by partner Equinor.

Oceaneering announced in August 2018 one of its subsidiaries entered a contract with Equinor to provide a resident, battery-powered electric ROV to support subsea inspection, maintenance and repair activities on the Norwegian Continental Shelf in water depths up to 1,000 m. “This technology also deploys machine vision learning and augmented reality techniques, and allows for efficiencies and versatility that lead to real-time control of the ROV and its tooling,” according to the release.

The first-generation vehicle is moving beyond its original missions of carrying out remote operations utilizing subsea power stations. Amid continued steps to improve equipment reliability, the next generation E-ROV includes auto tooling, microbots, longer extensions, life-of-field applications and additional supervisory control, he explained.

“The technology inside E-ROV is actually building blocks for a lot of the future subsea robots,” Newell said. Key to its value proposition is an ability to be quickly deployed off a vessel to carry out tasks and picked up other vessels nearby to carry out additional tasks, if needed. He compared the vessels as acting like taxicabs or Ubers for the E-ROV.

The solution is ideal for shallow-water regions where there is good field density, he said, adding: “It’s a really nice way of getting approximately 50-100 service vessel days out of annual service vessel budgets. That’s not a trivial amount of money for a solution that’s utilizing a lot of existing technology.”

Volatile commodity prices combined with a drive for great efficiency have solidified technology’s place at the forefront of many oil and gas companies’ agendas to help bring down costs and improve operations. ROVs combined with automation could also transform how offshore operations are carried out. Such technologies are freeing up humans, who take on tasks such as inspecting hulls, to perform other crucial tasks as innovation continues.

Oceaneering’s current E-ROV system is remotely operated using the company’s proprietary Remote Piloting and Automated Control Technology (RPACT). As explained by the company, the system can perform typical tasks such as inspection, valve operation, torque tool operation and manipulator-related actions. It communicates to the onshore mission support center via a 4G mobile broadband system, allowing for the transfer of real-time data and control.

Its battery system has about 500-kilowatt hours of energy, equivalent to about six weeks, Newell said. And the ROV can be recharged either subsea or on deck. The average ROV mission is about 30 hours. The ROV’s main tasks have included a valve operation, a general observation operation on a leak and a cutting transport operation, Newell said.

The company is gearing up to unveil its next-generation E-ROV at the end of March, Newell said. The company plans to display the Freedom ROV during the Offshore Technology Conference in Houston.

Freedom can be either remotely piloted via tether or operated autonomously and tetherless using battery power, Oceaneering said. The Freedom ROV uses RPACT as well as Compass supervisory control software.

“The software provides full vehicle control—autonomy, payload and sensor control, topside mission planning, and situation awareness. The purpose-built Compass software provides key vehicle piloting improvements, including an unprecedented level of awareness in crowded subsea fields,” Oceaneering said on its website. “The Freedom ROV can be programmed to make piloting decisions without the need for human pilot control, such as avoiding obstacles or responding to changing plans.”

“Once we get E-ROV to where it has three months subsea duration, that’s a nice time window for this to become a drilling support tool,” Newell said. “There are supervisory controls built into this E-ROV already. There will be additional supervisory controls as well.”

The company also has plans to take the technology into deeper water. Though, Newell admits that could be a bit more challenging when it comes to communications using a 4G buoy or a satellite communications system. But that challenge, he said, could be remedied by using a power and communications cable from a drilling rig.

Also, the system will eventually move to electric tool manipulators, which also poses some challenges. In addition to having higher maintenance costs, lots of lift capability is lost with the switch to electric from hydraulic, Newell said.

Meanwhile, the company continues to work on autonomy.

“We think we’ll be commercially viable for autonomy in Q1 2020,” Newell said, noting it’s more like automated-guided vehicle technology—getting from Point A to Point B without getting lost or running into things. Once the ROV stops in front of an object, it basically becomes a fixed robot to a degree, he added.

Velda Addison can be reached at vaddison@hartenergy.com.